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Abstract
For a restricted class of potentials (harmonic+Gaussian potentials), we express
the resolvent integral for the correlation functions of simple traces of powers
of complex matrices of size N, in terms of a determinant. This determinant
is a function of four kernels constructed from the orthogonal polynomials
corresponding to the potential and from their Cauchy transform. The correlation
functions are a sum of expressions attached to a set of fully packed oriented
loop configurations. We apply this technique to rotational invariant systems.
More specifically, in the case of the Gaussian potential, explicit expressions
can be written for each configuration and their large N expansion (’t Hooft
expansion) and their BMN limit can be calculated. On simple examples, we
recover results already known in the literature.

PACS number: 02.10.Yn

1. Introduction

A recent application of random matrix theory is the study of the equivalence between the IIB
string theory restricted to the pp-wave geometry and the N = 4, SU(N) Super Yang Mills
theory restricted to its BMN limit [1, 2]. In the Super Yang Mills theory, the number of colours
N governs the topological ’t Hooft expansion [3] while the constant λ = g2

YMN governs the
loop expansion. The BMN sectors are defined by the value J of the R charge corresponding to
a particular SO(2) subgroup of the bosonic SO(6) symmetry of the theory. Then, the BMN
gauge theory is the limiting theory when N and J → ∞ while g2 = J 2

N
remains finite. The

parameter g2 governs the topological expansion of the theory while λ′ = g2
YMN

J 2 governs the
loop expansion. In the planar approximation (g2 = 0) the BMN prediction was confirmed
in all orders of λ′ [4, 5]. However, what happens for non-planar contributions is relatively
unknown beyond first order in λ′.

The SO(2) subgroup of symmetry singles out one of the three complex scalar fields of
the Super Yang Mills theory, say the Z fields; the R charge counts the number of such Z fields.
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This counting may be expressed in terms of integrals over complex matrices with Gaussian
potentials. In this publication we are interested in the correlation functions for simple traces of
complex matrices and for a certain class of potentials (which include the Gaussian potential).

Given a potential V (M,M+) where M is a N × N matrix with complex elements, we
define the partition function as

Z =
∫

dM dM+ e−Tr V (M,M+) (1.1)

where we integrate over all matrix elements. We define the correlation functions as〈
n∏

i=1

Oi(M,M+)

〉
= 1

Z

∫
dM dM+

n∏
i=1

Oi(M,M+) e−Tr V (M,M+). (1.2)

Most observables O(M,M+) can be expressed in terms of traces of product of the matrices
M and M+. In this publication, we restrict ourselves to the case of simple traces〈

p∏
i=1

[Tr MJi ]
q∏

i=1

[Tr(M+)Ki ]

〉
Ji and Ki > 0 (1.3)

for a restricted class of potentials (described below). Of course, integrals (1.1) and (1.2)
generally diverge; however, for those potentials such that the integrals converge there exists
an equivalence theorem [6] which tells that the integrals over M and M+ are equivalent to
the integrals over two Hermitian matrices M1 and M2 (up to some analytic continuation in
the parameters of the potential). This equivalence can even be extended to potentials which
are the sum of a Gaussian potential and a harmonic potential (equivalent to the two matrix
theory). Moreover in that case, after a Jordan transformation of the matrices M and M+ and
if we consider only simple traces, the (possibly divergent) integrals over the upper triangular
variables cancel out from the numerator and the denominator of the expression (1.2). We are
left with the integrals over the eigenvalues. At this stage, we can enlarge the class of potentials
V (z, z∗) to any potential which admits an infinite set of biorthogonal polynomials.

The main result of this publication is written at the end of the introduction (1.26) where
we express the generating functionals for the correlation functions of simple traces in terms
of a determinant ‘DN−1’ where N is the size of the complex matrix. The elements of the
determinant are written in terms of four kernels constructed with the orthogonal polynomials
corresponding to the potential and with their Cauchy transforms. In section 2, we describe the
determinant ‘Dn’ as a sum of contributions attached to a set of fully packed oriented loops.
In section 3, we introduce the Ginibre polynomials which are orthogonal for rotationally
invariant systems and we give in that case a general form for the contributions of the graphs
of section 2. Finally, in section 4, we apply the formalism to the Gaussian potential and
determine the large N ’t Hooft topological expansion and the BMN limit for some simple
graphs. Although our method of calculation is valid for any graph defined by the determinant
‘Dn’, the effective computation becomes more and more heavy with the importance of the
graph; in this publication, we present the simplest cases which are quite often known in the
literature [7–9].

We now explain the method used to obtain the above correlation functions.
If certain conditions on the potential V (M,M+) are satisfied, we were able in [12] to

calculate the following expectation values

1

Z

∫
dM dM+

∏L2
i=1 det(η∗

i − M+)∏M2
i=1 det(x∗

i − M+)

∏L1
i=1 det(ξi − M)∏M1
i=1 det(yi − M)

e−Tr V (M,M+) (1.4)

for any numbers L1,M1, L2,M2 of determinants. The general result is essentially a
determinant constructed from four kernels, each kernel is a function of the external sources
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ξi, η
∗
i , yi, x

∗
i which enter the orthogonal polynomials relative to the potential V (z, z∗) and

their Cauchy transform. The structure of this determinant is very dependent on the relative
values of L1,M1, L2,M2. In this publication we are only interested in the special case where
L1 = M1, L2 = M2 since in that case, if we perform the derivatives

M2∏
i=1

(
∂

∂η∗
i

)
x∗

i =η∗
i

M1∏
i=1

(
∂

∂ξi

)
yi=ξi

on (1.4) we obtain

WM1,M2(ξi, η
∗
i ) = 1

Z

∫
dM dM+

M2∏
i=1

Tr
1

η∗
i − M+

M1∏
i=1

Tr
1

ξi − M
e−Tr V (M,M+). (1.5)

The above resolvent integrals are the generating functionals for the integrals

1

Z

∫
dM dM+

M2∏
i=1

Tr[(M+)Ki ]
M1∏
i=1

Tr[(M)Ji ] e−Tr V (M,M+) (1.6)

which describe the correlation functions (1.3).
Let us now describe the conditions required to be satisfied by the potential V (M,M+).

Any matrix M can be triangularized by a unitary matrix U (which is determined up to a unitary
diagonal matrix) [10, 11]

M = U [D + T ]U+, (1.7)

where D is the diagonal matrix of the eigenvalues (z1, . . . , zN) of M, and T is a strictly upper
triangular matrix. Consequently, any power of M and M+ is of the form

Mk = U [Dk + Tk]U+ (1.8a)

(M+)k = U
[
(D+)k + T +

k

]
U+, (1.8b)

where Tk is a strictly upper triangular matrix which also depends on the eigenvalues zi for
k > 1. Clearly, we have

Tr Mk =
N∑

i=1

zk
i (1.9a)

Tr(M+)k =
N∑

i=1

(z∗
i )

k. (1.9b)

On the other hand,

Tr MM+ =
N∑

i=1

ziz
∗
i + Tr T T +. (1.10)

In transformation (1.7),

det(ξi − M) = det(ξi − D) (1.11a)

det(η∗
i − M+) = det(η∗

i − D+). (1.11b)

and the integration measure becomes

dM dM+ = dU dT dT + dD dD+
∏
i<j

|zi − zj |2. (1.12)
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We note that dM dM+ represents 2N2 variables of integration while dU represents N(N − 1)

variables of integration, dT dT + represents N(N − 1) variables of integration and dD dD+

represents 2N variables of integration. The Jacobian of the transformation is given by the
product of two Vandermonde determinants �(z)�(z∗) where

�(z) =
∏
i<j

(zi − zj ) =
∣∣∣∣∣∣
πN−1(z1) · · · πN−1(zN)

· · · · · · · · ·
π0(z1) · · · π0(zN)

∣∣∣∣∣∣ (1.13)

and where the polynomials {π0(z), π1(z), π2(z), . . . , πN−1(z)} are any set of monic
polynomials of successive degrees 0, 1, 2, . . . , N − 1.

Consequently, if we choose the potential V (M,M+) to be of the form

V (M,M+) = MM+ + V (M) + V (M+) (1.14)

we may separate the integrations over the unitary group dU and over the upper triangular
part dT dT + e−Tr T T +

and these two contributions cancel in the ratio of the numerator and the
denominator of (1.5), (1.6). We are left with integrals over the eigenvalues only.

More generally, we consider the integrals ZN, IN and JN and a potential V (z, z∗) such
that the following integrals exist:

ZN =
∫

dµ(z, z∗) (1.15a)

IN = 1

ZN

∫
dµ(z, z∗)

N∏
j=1

{∏L2
i=1(z

∗
j − η∗

i )∏M2
i=1(z

∗
j − x∗

i )

∏L1
i=1(zj − ξi)∏M1
i=1(zj − yi)

}
(1.15b)

JN = 1

ZN

∫
dµ(z, z∗)

M2∏
i=1




N∑
j=1

1

z∗
j − η∗

i




M1∏
i=1




N∑
j=1

1

zi − ξi


 (1.15c)

dµ(z, z∗) =
N∏

i=1

dzi dz∗
i

∏
i<j

|zi − zj |2 e−∑N
i=1 V (zi ,z

∗
i ). (1.15d)

The integrals JN are generating functionals for the integrals

1

ZN

∫
dµ(z, z∗)

M2∏
i=1




N∑
j=1

(z∗
j )

Ki




M1∏
i=1




N∑
j=1

(zj )
Ji


 . (1.16)

A second condition on V (M,M+) is that V (z, z∗) is real and admits a set of orthogonal
polynomials so that the technique of [12] can be applied (the reality of V (z, z∗) could be
forgotten at the price of introducing biorthogonal polynomials but we shall not consider this
case). We introduce the infinite set {pn(z)} of orthogonal, monic polynomials such that∫

d2z p∗
m(z)pn(z) e−V (z,z∗) = hnδnm, (1.17)

where p∗
m(z) is a short notation for [pm(z)]∗. Then, we consider the measure

dµ(z, z∗; ξi, η
∗
i ; yi, x

∗
i ) = d2z

∏L2
i=1(z

∗ − η∗
i )∏M2

i=1(z
∗ − x∗

i )

∏L1
i=1(z − ξi)∏M1
i=1(z − yi)

e−V (z,z∗). (1.18)

We proved in [12] the existence and constructed explicitly the set of monic, biorthogonal
polynomials qn(z; ξi, η

∗
i ; yi, x

∗
i ) and q∗

n(z; ηi, ξ
∗
i ; xi, y

∗
i ) satisfying∫

dµ(z, z∗; ξi, η
∗
i ; yi, x

∗
i )q∗

m(z; ηi, ξ
∗
i ; xi, y

∗
i )qn(z; ξi, η

∗
i ; yi, x

∗
i ) = ‖qn‖2δnm. (1.19)
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This construction is a generalization of Christoffel’s result [13] which shows that given a
positive Borel measure of one variable dµ(x) on the real line and its infinite set of orthogonal
polynomials, it is possible to construct an infinite set of orthogonal polynomials for the measure

dµ(x; ξi) = dµ(x)

L∏
i=1

(x − ξi). (1.20)

This result was extended to measures with external sources at the denominator by Uvarov [14]
in 1969 and more recently in [15, 16]. In 2003, Akemann and Vernizzi extended Christoffel’s
result to measures on the complex plane with external sources at the numerator [17] (see also
[18]); their work was generalized to sources at the denominator as well in [12, 19].

The consequence of the existence of biorthogonal polynomials for the measure (1.18) is
that

ZN = N !
N−1∏
i=0

hi (1.21a)

ZNIN = N !
N−1∏
i=0

‖qi‖2. (1.21b)

In the case L1 = M1, L2 = M2, the pseudonorms ‖qi‖2 are found in [12] to be the ratio
of two determinants

‖qi‖2 = hi

Di

Di−1
i � 0 (1.22)

where Dn is the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

Nn(ξ1, y1) · · · Nn

(
ξM1 , y1

)
An(x

∗
1 , y1) · · · An

(
x∗

M2
, y1

)
· · · · · · · · · · · · · · · · · ·

Nn

(
ξ1, yM1

) · · · Nn

(
ξM1 , yM1

)
An

(
x∗

1 , yM1

) · · · An

(
x∗

M2
, yM1

)
Kn(ξ1, η

∗
1) · · · Kn

(
ξM1 , η

∗
1

)
N∗

n (η1, x1) · · · N∗
n

(
η1, xM2

)
· · · · · · · · · · · · · · · · · ·

Kn

(
ξ1, η

∗
M2

) · · · Kn

(
ξM1 , η

∗
M2

)
N∗

n

(
ηM2 , x1

) · · · N∗
n

(
ηM2 , xM2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.23)

and D−1 is defined in (1.32). Consequently, in the case L1 = M1, L2 = M2 the integral IN is
found to be

IN = (−)
M1(M1−1)

2 (−)
M2(M2−1)

2

∏M2
i,j=1(x

∗
i − η∗

j )
∏M1

i,j=1(yi − ξj )

�(x∗)�(y)�(η∗)�(ξ)
DN−1. (1.24)

Then, by application of the derivatives
∏M2

i=1

(
∂

∂η∗
i

)
x∗

i =η∗
i

∏M1
i=1

(
∂

∂ξi

)
yi=ξi

on (1.24), we proved
in [12] that

WM1,M2(ξi, η
∗
i ) = JN = ‘DN−1’ (1.25)

where ‘Dn’ is the ‘subtracted determinant’

‘Dn’ =

‘∣∣∣∣∣∣∣∣∣∣∣∣∣

Hn(ξ1, ξ1) · · · Nn

(
ξM1 , ξ1

)
An(η

∗
1, ξ1) · · · An

(
η∗

M2
, ξ1

)
· · · · · · · · · · · · · · · · · ·

Nn

(
ξ1, ξM1

) · · · Hn

(
ξM1 , ξM1

)
An

(
η∗

1, ξM1

) · · · An

(
η∗

M2
, ξM1

)
Kn(ξ1, η

∗
1) · · · Kn

(
ξM1 , η

∗
1

)
H ∗

n (η1, η1) · · · N∗
n

(
ηM2 , η1

)
· · · · · · · · · · · · · · · · · ·

Kn

(
ξ1, η

∗
M2

) · · · Kn

(
ξM1 , η

∗
M2

)
N∗

n

(
η1, ηM2

) · · · H ∗
n

(
ηM2 , ηM2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

’

. (1.26)
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The determinant Dn is expressed in terms of four kernelsKn,Nn,N
∗
n , An which are defined

with some of their properties at the end of this introduction (1.28)–(1.30). The determinant
‘Dn’ is obtained from the determinant Dn by changing all kernels Nn on the diagonal into Hn,
changing all yk into ξk , all x∗

k into η∗
k and finally by ignoring all double poles at ξj = ξk and

at η∗
j = η∗

k (this operation is denoted by ‘ ’) as we develop determinant (1.26) with terms like
Nn(ξj , ξk)Nn(ξk, ξj ) or N∗

n (ηk, ηj )N
∗
n (ηj , ηk). In fact, from (1.30b) we observe that there are

no single poles either at ξj = ξk or at η∗
j = η∗

k since the residues are zero

‘Nn(ξj , ξk)Nn(ξk, ξj )’ = Hn(ξj , ξk)Hn(ξk, ξj ) +
Hn(ξj , ξk) − Hn(ξk, ξj )

ξj − ξk

. (1.27)

Clearly, after subtraction of the double pole 1
(ξi−ξj )2 in (1.26), the minor of 1

ξi−ξj
(or of N(ξj , ξi))

and the minor of 1
ξj −ξi

(or of N(ξi, ξj )) are equal at ξi = ξj so that the residue of the pole
1

ξi−ξj
in ‘Dn’ is zero. The same property holds for the poles 1

ηi−ηj
. The determinant ‘Dn’ has

no pole for any polynomial potential V (z, z∗).
The end of this introduction is devoted to the description of the kernels Kn,Nn,An and

to some of their properties. We refer to [12] for the technical details. Here, we simply give
the definition of these kernels

Kn(ξ, η∗) =
n∑

i=0

pi(ξ)p∗
i (η)

hi

. (1.28)

We introduce the following integrals (in the case of potentials of one variable, the integral
(1.29a) is called the Cauchy–Hilbert transform of the corresponding polynomial),

tn(y) =
∫

d2z p∗
n(z)

1

z − y
e−V (z,z∗) (1.29a)

Q(x∗, y) =
∫

d2z
1

(z∗ − x∗)(z − y)
e−V (z,z∗) (1.29b)

then,

Hn(ξ, y) =
n∑

i=0

pi(ξ)ti(y)

hi

(1.30a)

Nn(ξ, y) = 1

y − ξ
+ Hn(ξ, y) (1.30b)

An(x
∗, y) =

n∑
i=0

t∗i (x)ti(y)

hi

− Q(x∗, y). (1.30c)

In (1.22), we also use the extensions

K−1(ξ, η∗) = 0 (1.31a)

N−1(ξ, y) = 1

y − ξ
(1.31b)

A−1(x
∗, y) = −Q(x∗, y) (1.31c)

and the determinant

D−1 =
∣∣∣∣∣N−1(ξj , yi) A−1(x

∗
l , yi)

0 N∗
−1(ηk, xl)

∣∣∣∣∣ (1.32a)
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D−1 = |N−1(ξj , yi)| · |N∗
−1(ηk, xl)| (1.32b)

where

|N−1(ξj , yi)| =

∣∣∣∣∣∣∣
1

y1−ξ1
· · · 1

y1−ξM1

· · · · · · · · ·
1

yM1 −ξ1
· · · 1

yM1 −ξM1

∣∣∣∣∣∣∣ (1.33a)

|N−1(ξj , yi)| = (−)
M1(M1−1)

2
�(y)�(ξ)∏
i,j (yi − ξj )

. (1.33b)

In [12], we prove the following properties,

∞∑
i=0

pi(ξ)ti(y)

hi

= 1

ξ − y
(1.34a)

∞∑
i=0

t∗i (x)ti(y)

hi

= Q(x∗, y) (1.34b)

so that we have the formal power series

Nn(ξ, y) = −
∞∑

i=n+1

pi(ξ)ti(y)

hi

(1.35a)

An(x
∗, y) = −

∞∑
i=n+1

t∗i (x)ti(y)

hi

. (1.35b)

Finally, we have the asymptotic behaviour

tn(y) ∼ − hn

yn+1
as y → ∞ (1.36a)

Nn(ξ, y) ∼ pn+1(ξ)

yn+2
as y → ∞ (1.36b)

An(x
∗, y) ∼ t∗n+1(x)

yn+2
as y → ∞. (1.36c)

2. The graph description of the determinant ‘Dn’

The determinant ‘Dn’ as given in (1.26) is a sum of products of oriented propagators joining
the various points (for simplicity, we label the points and the corresponding variables by the
same letter). Let us split the plane into two parts separated by a border line; in the right part
we draw the various points η∗

i and in the left part we draw the various points ξi . As we develop
the determinant, every time we meet a kernel An(η

∗
i , ξj ) we draw an oriented propagator

from the point η∗
i towards the point ξj crossing the border from right to left; similarly with

the kernel Kn(ξi, η
∗
j ) we draw an oriented propagator from the point ξi towards the point η∗

j

crossing the border from left to right. Then, inside the ξ -region we draw an oriented propagator
from the point ξi towards the point ξj corresponding to the kernel Nn(ξi, ξj ); in addition, the
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A

N

N

N

N

H

A

K

N∗

H∗

N

ξ1

ξ2

ξ4

ξ5

ξ6

ξ8

ξ7

ξ3

η∗
1

η∗
2

η∗
4

η∗
5

η∗
6

η∗
3

N∗

N∗

K

Figure 1. Contribution to W8,6(ξ1, . . . , ξ8; η�
1, . . . , η

�
6).

diagonal part of ‘Dn’ defines self closing loops on one point ξi from the kernel Hn(ξi, ξi).
Similarly, inside the η∗-region we draw an oriented propagator from the point η∗

i towards the
point η∗

j corresponding to the kernel N∗
n (ηj , ηi); in addition, the diagonal part of ‘Dn’ defines

self-closing loops on one point η∗
i from the kernel H ∗

n (ηi, ηi).
As we develop the determinant, the product of propagators describes a number of disjoint

oriented closed loops γa (including self-loop with one point) so that any point ξi or η∗
i belongs

to one closed loop γa and only one; we call such a configuration ‘fully packed oriented loops
configuration’ which we denote by 
 (figure 1); the number of oriented loops in 
 is denoted
by #(
)


 = ∪#(
)
a=1 γa. (2.1)

The determinant ‘Dn’ is the sum over the (M1 + M2)! configurations 
 ,

‘Dn’ = (−)M1+M2
∑



#(
)∏
a=1

(−Iγa

)
. (2.2)

Given an oriented loop γ , which is not made of N propagators alone and/or of N∗

propagators alone, the amplitude Iγ is the product of a certain number q > 0 of propagators
Kn and of the same number q of propagators An; the remaining propagators describe q chains
of propagators N and q chains of propagators N∗ (such chains may be reduced to a single
point). We call skeleton graph an oriented loop γ without N and N∗ propagators. With
any oriented loop γ we associate a skeleton graph by contraction of each of its chains of
propagators N or N∗ into a point.

Along a given chain, the propagators N or N∗ have poles when the ξ ’s or the η’s coincide.
However, these poles cancel when we sum over all permutations of the ξ ’s or of the η’s inside a
given chain of propagators N or N∗ because the determinant ‘Dn’ has no pole for any potential
(the residues vanish). In appendix A we show, in the Gaussian case, how the poles cancel
when we sum over several configurations which have the same associated skeleton graph.

For a given potential V (z, z∗), we must calculate the orthogonal polynomials pn(z) and
their Cauchy transform tn(z) in order to evaluate the kernels which are the propagators of
the graphs. Of course, each case is a specific case; however, some general structure can
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be obtained in the special case where the system (potential and domain of integration) is
rotationally invariant.

3. The 1
ξ
, 1

η∗ expansion in the case of the rotationally invariant systems

The expressions for the four kernels Kn,Nn,N
∗
n , An simplify greatly in the case of rotationally

invariant systems because the angular integrations in (1.17) are trivially performed. Given
a potential V (zz∗) and a disc of radius R which might be the complex plane (R = ∞) if
exp(−V (zz∗)) decreases strongly enough at ∞. In that case, the orthogonal polynomials are
the so-called Ginibre polynomials

pn(z) = zn (3.1)

and their norms squared are

hn = 2π

∫ R

0
dρ ρ2n+1 e−V (ρ2). (3.2)

In the Gaussian case where V (zz∗) = zz∗ and R = ∞,

hn = π�(n + 1). (3.3)

The function tn(y) defined in (1.29a) is found to be

tn(y) = − hn

yn+1
, |y| > R (3.4)

if R = ∞ this result is still valid up to exponentially small terms when y → ∞ and can be
used as a formal power series (see also (1.34a)).

According to (1.28) and (1.30) the formal power series for the kernels Kn,Hn,Nn and An

are

Kn(ξ, η∗) =
n∑

j=0

(ξη∗)j

hj

(3.5a)

Hn(ξi, ξj ) = − 1

ξn+1
j

ξn+1
i − ξn+1

j

ξi − ξj

ξi �= ξj (3.5b)

so that

Hn(ξi, ξi) = −n + 1

ξi

(3.6a)

Nn(ξi, ξj ) =
(

ξi

ξj

)n+1 1

ξj − ξi

. (3.6b)

Finally,

An(η
∗, ξ) = −

∞∑
i=n+1

hi

(ξη∗)i+1
. (3.7)

It is now possible to calculate for any closed loop γ the corresponding amplitude Iγ which
contributes to the value of the determinant ‘Dn’.
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i

KJ

A

K j

yx

Figure 2. Graph γ1 → Wc
1,1(x, y).

3.1. The 1
ξ
, 1

η∗ expansion for the skeleton graphs

Given a skeleton graph with q > 0 propagators A and q propagators K, the expression for Iγ

can be written as

Iγ =
q∏

k=1

An

(
η∗

αk
, ξαk

) q∏
i

Kn

(
ξαk

, η∗
αk+1

)
, with η∗

αq+1
= η∗

α1
. (3.8)

As we expand the propagators An and Kn according to (3.5a) and (3.7) we introduce an
internal momentum ik for An

(
η∗

αk
, ξαk

)
and an internal momentum jk for Kn

(
ξαk

, η∗
αk+1

)
; the

summation over ik runs from n + 1 to ∞ while the summation over jk runs from 0 to n. By
convention, we extend the definition of hj to negative j ’s as hj<0 = ∞ so that in Kn we may
eventually ignore the lower limit of summation.

The expansion of Iγ is of the form

Iγ =
∑

{J ’s>0,K’s>0}

q∏
k=1

(
1

ξ
Jk+1
αk

)
q∏

k=1

(
1

η
Kk+1
αk

)∗
I (Jk,Kk) (3.9)

where

I (Jk,Kk) = (−)q
∑

D{Jk ,Kk }

hi1 · · · hiq

hj1 · · · hjq

(3.10)

and D{Jk,Kk} is the summation domain for the indices ik and jk . The determination of this
domain is the main difficulty. Clearly, all the indices i’s and j ’s are fixed in terms of the J ’s
and the K’s up to a translation.

We first describe some simple examples:
(a) Let us consider the graph γ1 (figure 2).
In that case, the momentum conservation law is

i − j = J = K (3.11)

so that the domain of summation for the momentum j is

n − J + 1 � j � n. (3.12)

Consequently,

Iγ1(J,K) = −δJ,K

n∑
j=n−J+1

hj+J

hj

(3.13)
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Figure 3. Graph γ2 → contribution to Wc
2,2(x1, x2; y1, y2).

Equation (3.13) is still valid in the case where n − J + 1 < 0 with the convention hj<0 = ∞.
We define the characteristic function for the skeleton graph γ1

�γ1(n, J ) =
n∑

j=0

hj+J

hj

(3.14)

then,

Iγ1(J,K) = −δJ,K(1 − TJ )�γ1(n, J ) (3.15)

where the operator TJ is a translation operator over n

TJ f (n) = f (n − J ). (3.16)

(b) Let us consider the graph γ2 (figure 3).
Choosing j2 = j as the independent loop momentum, we observe the following

constraints:

j � n + 1 − K1, j � n + 1 − J2 (3.17a)

j � n − K1 + J1, j � n (3.17b)

J = J1 + J2 = K1 + K2 = K. (3.17c)

Consequently, we obtain

Iγ2(J1, J2,K1,K2) = δJ,KO(Ji,Ki)�γ2(n, Ji,Ki) (3.18a)

O(Ji,Ki) = TSup(K1−J1,0) − TInf(K1,J2) (3.18b)

�γ2(n, Ji,Ki) =
n∑

j=0

hj+K1hj+J2

hj+K1−J1hj

. (3.18c)

(c) The generalization to the skeleton graph γq with q pairs of propagators An and Kn is
now straightforward. We define

J =
q∑

k=1

Jk K =
q∑

k=1

Kk (3.19)
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and choose j = jq as an independent loop momentum so that

ik = jq + bk jk = jq + ak (3.20)

with

ak =
k∑

p=1

(Kp − Jp), aq=0 (3.21a)

bk = ak + Jk � 1. (3.21b)

We note from (3.20) that any variable bk is strictly larger than any variable ak′ . The contribution
of the graph γq is

Iγq
(Ji,Ki) = (−)qδJ,K(TX − TY )�γq

(n, Ji,Ki) (3.22a)

�γq
(n, Ji,Ki) =

n∑
j=0

hj+b1 · · · hj+bq

hj+a1 · · · hj+aq

(3.22b)

with

0 � X = Sup(ak) (3.23a)

1 � Y = Inf(bk). (3.23b)

3.2. The 1
ξ
, 1

η
expansion for any graph

A one-loop graph γ is made of q propagators A, q propagators K, q chains (C1, . . . , Cq) of
propagators N and q chains (C∗

1 , . . . , C∗
q ) of propagators N∗ (the chains can be reduced to a

single point). The case q = 0 is made of loops of N propagators alone, or of N∗ propagators
alone. With each chain Ci we associate an external outgoing momentum

�i =
∑
ξk∈Ci

Jk (3.24)

and with each chain C∗
i an external ingoing momentum

�i =
∑

ηk∈C∗
i

Kk. (3.25)

Now, with each graph γ we associate a skeleton graph s(γ ) obtained from γ by shrinking into
a point each of the chain Ci or C∗

i . With each of these points we associate the corresponding
external momentum �i or �i ; we have

J =
q∑

i=1

�i =
q∑

i=1

�i =
∑
ξk∈γ

Jk =
∑
ηk∈γ

Kk = K. (3.26)

Because all J ’s and K’s are positive or nul, equation (3.26) shows that if the graph γ is made of
N propagators alone (q = 0), since the K’s are zero, the J ’s are also zero. The only non-zero
contribution in this category is the self-closed loop with one point which is Hn(ξi, ξi) = − n+1

ξi
.

The two-point loop is

‘N(ξi, ξj )N(ξj , ξi)’ = 0. (3.27)

Larger loops of N propagators alone, or of N∗ propagators alone are shown in appendix A to
be zero.
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The functions hi are only present in the A and K propagators so that the function to be
summed for a graph γ is the characteristic function of the skeleton graph s(γ ),

hj+b1 · · · hj+bq

hj+a1 · · · hj+aq

, (3.28)

where j is the momentum corresponding to the propagator Kq and

ak =
k∑

p=1

(�p − �p), aq=0 (3.29a)

bk = ak + �k � 1. (3.29b)

Equation (3.10) for a one-loop graph γ with propagators N and N∗ can be written as

Iγ (Ji,Ki) = (−)qδJ,KO(Ji,Ki)

n∑
j=0

hj+b1 · · · hj+bq

hj+a1 · · · hj+aq

(3.30)

where the operator O(Ji,Ki) determines the range of summation for the variable j and is
described below.

We introduce the commutative operation ⊗

Ta ⊗ Tb = TSup(a,b) (3.31a)

1 ⊗ Tb = TSup(0,b) (3.31b)

so that conditions such as n − a + 1 � j � n together with n − b + 1 � j � n, where a and b
are positive, can be written as

n∑
j=n−Inf(a,b)+1

· · · = (1 − Ta) ⊗ (1 − Tb)

n∑
j=0

· · · . (3.32)

Now, we proved in appendix A that for a given chain Ci with p points ((p−1) propagators), the
sum over the p! permutations generates a domain of summation for the variable ji described
by the operator

∏
ξr∈Ci

(
1−TJr

)
; since the propagator with momentum ji is between the chains

Ci and C∗
i+1 (with C∗

q+1 = C∗
1 ) the constraints on ji can be written

∏
ξr∈Ci

(
1 − TJr

) ⊗

 ∏

ηs∈C∗
i+1

(
1 − TKs

) (3.33)

and using relation (3.20) we can write the corresponding constraints on jq as

Tai




∏

ξr∈Ci

(
1 − TJr

) ⊗

 ∏

ηs∈C∗
i+1

(
1 − TKs

)

 . (3.34)

We collect all the constraints on the various momenta ji for i = 1, . . . , q and write

O(Ji,Ki) = ⊗q

i=1


Tai




∏

ξr∈Ci

(
1 − TJr

) ⊗

 ∏

ηs∈C∗
i+1

(
1 − TKs

)



 . (3.35)



8762 M C Bergère

4. The Gaussian potential, large N and BMN expansion

We now apply the results of section 3 to the Gaussian potential with the function hn given in
(3.3). In this section and in all the figures, we write Wc

p,q(xi, yi) for the connected part of
Wp,q(xi, yi) defined in (1.5). We also replace the index n of section 3 by (N − 1) according
to (1.25).

(1) Let us consider the two points function [7, 8]

W1,1(x, y) =
〈
Tr

1

x − M
Tr

1

y − M+

〉
(4.1)

which is equal from (1.26) to the determinant

DN−1 = det

∣∣∣∣HN−1(x, x) AN−1(y, x)

KN−1(x, y) HN−1(y, y)

∣∣∣∣ . (4.2)

The part HN−1(x, x)HN−1(y, y) of the determinant corresponds to a disconnected graph made
of two self-closing loops and from (3.6a) is equal to N2

xy
. The part AN−1(y, x)KN−1(x, y) of the

determinant corresponds to the graph γ1 (figure 2). The corresponding function �γ1(N −1, J )

is given in (3.14)

�γ1(N − 1, J ) =
N−1∑
j=0

�(j + J + 1)

�(j + 1)
= 1

J + 1

�(N + J + 1)

�(N)
. (4.3)

Consequently, according to (3.15)

AN−1(y, x)KN−1(x, y) = −
∞∑

J=1

1

(xy)J+1

1

J + 1

[
�(N + J + 1)

�(N)
− �(N + 1)

�(N − J )

]
. (4.4)

The square bracket [ ] in (4.4) has clearly a 1
N2 expansion

�(N + J + 1)

�(N)
− �(N + 1)

�(N − J )
= 2NJ

∑
p odd>0

1

Np−1
σp(J ) (4.5)

where σp(J ) is described in appendix B. After a convenient rescaling, we write
AN−1(y

√
N, x

√
N)KN−1(x

√
N, y

√
N) as

− 1

N

∞∑
J=1

1

(xy)J+1

[
J +

1

24N2
(J + 1)J 2(J − 1)(J − 2) + O

(
1

N4

)]
(4.6a)

= − 1

N

[
1

(xy − 1)2
+

1

N2

xy(3xy + 2)

(xy − 1)6
+ O

(
1

N4

)]
. (4.6b)

The so-called BMN limit of Iγ1(J,K) (defined in (3.15), (4.3)) is the large N, large J

limit with constant J 2

N
, K2

N
. From the large J behaviour of σp(J ) as given in appendix B, we

obtain the BMN limit as

Iγ1(J,K) ∼ −δJ,K

2NJ+1

J
sh

(
J 2

2N

)
. (4.7)

At this stage, we find it convenient to introduce a formalism developed in appendix B,
which makes the 1

N2 expansion and the BMN limit transparent. We define

N∗∗(J+1) =
(

N − J

2

)(
N − J

2
+ 1

)
· · ·

(
N +

J

2
− 1

)(
N +

J

2

)
(4.8)
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Figure 4. Contribution to Wc
2,1(x1, x2; y).

which has manifestly a 1
N2 expansion

N∗∗(J+1) =
E( J+1

2 )∑
p=0

(−)p�2p(J )NJ−2p+1, (4.9)

where the coefficients �2p(J ) are given in appendix B. Consequently, expression (4.4) can be
written as

(1 − TJ )
1

J + 1

�(N + J + 1)

�(N)
= 2

J + 1
sh

(
J

2

∂

∂N

)
N∗∗(J+1) (4.10)

which is manifestly a 1
N2 expansion. Also the BMN limit of N∗∗(J+1) is simply NJ+1 so that

the BMN limit of (4.10) consists in replacing ∂
∂N

by J
N

and N∗∗(J+1) by NJ+1.
(2) We now consider the three-point function [7, 8]

W2,1(x1, x2, y) =
〈
Tr

1

x1 − M
Tr

1

x2 − M
Tr

1

y − M+

〉
(4.11)

which is equal from (1.26) to the determinant

DN−1 = det

∣∣∣∣∣∣
HN−1(x1, x1) NN−1(x2, x1) AN−1(y, x1)

NN−1(x1, x2) HN−1(x2, x2) AN−1(y, x2)

KN−1(x1, y) KN−1(x2, y) HN−1(y, y)

∣∣∣∣∣∣ . (4.12)

The connected contribution to (4.12) is (figure 4)

[AN−1(y, x1)NN−1(x1, x2)KN−1(x2, y) + (x1 ⇔ x2)].

In section 3 and in appendix A, we prove that this combination is equal to

Wc
2,1(x1, x2, y) =

∞∑
{J1,J2,K}=1

1

x
J1+1
1

1

x
J2+1
2

1

yK+1
I2(N, J1, J2,K) (4.13a)

I2(N, J1, J2,K) = −δJ,K

(
1 − TJ1

)(
1 − TJ2

) 1

J + 1

�(N + J + 1)

�(N)
(4.13b)

I2(N, J1, J2,K) = −δJ,K

4

J + 1
sh

(
J1

2

∂

∂N

)
sh

(
J2

2

∂

∂N

)
N∗∗(J+1) (4.13c)
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Figure 5. Contribution to Wc
p,1(x1, . . . , xp; y).

where J = K = J1 + J2. The large N behaviour of Wc
2,1(x1

√
N, x2

√
N, y

√
N) is found to be

− y

N
5
2

∞∑
{J1,J2}=1

1

(yx1)J1+1

1

(yx2)J2+1
J1J2J

×
[

1 +
1

24N2
(J − 1)(J − 2){(J + 1)(J − 2) − 2J1J2} + O

(
1

N4

)]
(4.14)

or

Wc
2,1(x1

√
N, x2

√
N, y

√
N) = − 2y

N
5
2

[
y2x1x2 − 1

(yx1 − 1)3(yx2 − 1)3
+ O

(
1

N2

)]
. (4.15)

Finally from (4.13c), the BMN limit, where N, J1, J2 are large with J 2
1

N
,

J 2
2

N
constant, is

obtained as

I2(N, J1, J2,K) ∼ −δJ,K

4NJ+1

J
sh

(
J1J

2N

)
sh

(
J2J

2N

)
. (4.16)

(3) The generalization (figure 5) of situation (2) is the calculation of Wc
p,1(x1, . . . , xp, y)

and is easy to understand (conjectured in [8]). We sum over p! graphs obtained by exchanging
the p points xi and we calculate

Wc
p,1(xi, y) =

[
AN−1(y, x1)

p−1∏
i=1

NN−1(xi, xi+1)KN−1(xp, y) + Sym(xi)

]
, (4.17)

where Sym(xi) means that we sum over the p! permutations of the variables xi .
From section 3 and appendix A, we know that the poles of the propagators NN−1(xi, xi+1)

cancel in the sum and that the result can be written as

Wc
p,1(xi, y) =

∞∑
{Ji ,K}=1

p∏
i=1

1

x
Ji+1
i

1

yK+1
Ip(N, Ji,K) (4.18a)

Ip(N, Ji,K) = −δJ,K

p∏
i=1

(
1 − TJi

) 1

J + 1

�(N + J + 1)

�(N)
(4.18b)
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Figure 6. Contribution to Wc
2,2(x1, x2; y1, y2).

Ip(N, Ji,K) = −δJ,K

2p

J + 1

p∏
i=1

sh

(
Ji

2

∂

∂N

)
N∗∗(J+1), (4.18c)

where J = K = J1 + · · · + Jp. The asymptotic behaviour at large N of Wc
p,1(xi

√
N, y

√
N)

after a proper rescaling of the variables, is

− yp−1

N
3p−1

2

∞∑
{Ji }=1

p∏
i=1

1

(xiy)Ji+1

[
J1 · · · JpJ (J − 1) · · · (J − p + 2) + O

(
1

N2

)]
(4.19)

or

Wc
p,1(xi

√
N, y

√
N) = (−)p

N
3p−1

2

{
∂p−1

∂yp−1

y2p−2∏p

i=1(xiy − 1)2
+ O

(
1

N2

)}
. (4.20)

The BMN limit is trivially obtained as

Ip(N, Ji,K) ∼ −δJ,K

2pNJ+1

J

p∏
i=1

sh

(
JiJ

2N

)
(4.21)

(4) We now apply the formalism to the four points, connected, resolvent function
Wc

2,2(x1, x2, y1, y2) [8]. First we calculate the contribution W
c(1)
2,2 (x1, x2, y1, y2) of the graph

of figure 6 and its crossed symmetric ones (J1 ⇔ J2 and K1 ⇔ K2).
We write

W
c(1)
2,2 (x1, x2, y1, y2) =

∞∑
{Ji ,Ki }=1

(
2∏

i=1

1

x
Ji+1
i

)(
2∏

i=1

1

y
Ki+1
i

)
I (N, Ji,Ki). (4.22)

The formalism of section 3 and appendix A applied to the corresponding four graphs gives

I (N, Ji,Ki) = −δJ,KO(Ji,Ki)
1

J + 1

�(N + J + 1)

�(N)
(4.23a)

O(Ji,Ki) = [(
1 − TJ1

)(
1 − TJ2

) ⊗ (
1 − TK1

)(
1 − TK2

)]
(4.23b)

O(Ji,Ki) = (1 − TInf)(1 + TSup), (4.23c)

where the symbol ⊗ is defined in (3.31) and where
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J = K = J1 + J2 = K1 + K2 (4.24a)

Inf = Inf(Ji,Ki) Sup = Sup(Ji,Ki). (4.24b)

The function I (N, Ji,Ki) can also be written as

I (N, Ji,Ki) = −δJ,K

4

J + 1
sh

(
Inf

2

∂

∂N

)
ch

(
Sup

2

∂

∂N

)
N∗∗(J+1). (4.25)

The BMN limit is immediately obtained as

I (N, Ji,Ki) ∼ −δJ,K

4NJ+1

J
sh

(
J · Inf

2N

)
ch

(
J · Sup

2N

)
, (4.26)

where J · Inf means J times Inf. The large N limit is obtained by expansion of the sh and ch
in (4.25) as

I (N, Ji,Ki) = −δJ,K2 Inf NJ ×
[

1 +
J (J − 1)

24N2
[3 Sup2 + Inf2 − (J + 2)] + O

(
1

N4

)]
.

(4.27)

(5) The remaining part of the connected four points resolvent function W
c(2)
2,2 (x1, x2, y1, y2)

is attached to the skeleton graphs of figure 3 and its crossed symmetric one (J1 ⇔ J2) or
(K1 ⇔ K2). According to section 3, we have for the graph of figure 3

I1(N, Ji,Ki) = δJ,K(TX − TY )

N−1∑
j=0

�(j + K1 + 1)

�(j + K1 − J1 + 1)

�(j + J2 + 1)

�(j + 1)
(4.28)

with J = J1 + J2 = K1 + K2 = K and with

X = Sup(K1 − J1, 0) Y = Inf(K1, J2). (4.29)

The sum in (4.28) is transformed in appendix B (B.31) into
Inf(J1,K2)∑

p=0

(−)pp!Cp

J1
C

p

K2

�(N + J − p + 1)

�(N)
. (4.30)

We can now compute the large N behaviour of I1(N, Ji,Ki); for instance, in the sector
J1 � K1,K2 � J2 we obtain

I1(N, Ji,Ki) = δJ,KJ2N
J

[
1 +

J1(K1 − K2)

2N
+

1

24N2
� + O

(
1

N3

)]
(4.31a)

� = J (J − 1)
[
3J 2

1 + J 2
2 − (J + 2)

] − 12K1K2J1(J1 − 1). (4.31b)

For the BMN behaviour, each term in (4.30) contributes; however, the sum of these
contributions can be performed and we obtain

I1(N, Ji,Ki) ∼ δJ,K

2NJ+1

J
sh

(
J2J

2N

)
e

J1(K1−K2)

2N . (4.32)

If we sum the graph of figure 3 and the crossed one, and if we describe each of the sectors
as

Sup � A,B � Inf (4.33)

with A + B = Sup + Inf = J = K , we obtain the large N behaviour for both graphs as

I (N, Ji,Ki) = δJ,K2 Inf NJ

[
1 +

1

24N2
� + O

(
1

N4

)]
(4.34a)
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� = J (J − 1)[3 Sup2 + Inf2 − (J + 2)] − 12AB Sup · (Sup − 1) (4.34b)

and the BMN behaviour as

I (N, Ji,Ki) ∼ δJ,K

4NJ+1

J
sh

(
J · Inf

2N

)
ch

(
(A − B) · Sup

2N

)
. (4.35)

(6) Finally, we sum the contributions (4) and (5) to obtain the asymptotic behaviour for
the complete connected four points correlation function; taking into account the relative minus
sign between (4) and (5), we obtain

�c
2(N, Ji,Ki) = −δJ,KNJ−2J1J2K1K2(Sup − 1) + O(NJ−4) (4.36a)

�c
2(N, Ji,Ki) ∼ −δJ,K

8NJ+1

J
sh

(
J · Inf

2N

)
sh

(
A · Sup

2N

)
sh

(
B · Sup

2N

)
. (4.36b)

We close this section with the following remarks. Although, in principle, we should be
able to calculate the contribution of any graph, we are unable at present to give the expression
for the sum of the graphs which enters a given k-points correlation function; this situation
may improve if we use the so-called loop equations [20, 21]. From example (5), we see that
the ’t Hooft topological expansion in 1

N2 is not true graph by graph and that the cancellations
between graphs are far from evident. Finally, we verify on these examples that at large N the
resolvent function properly rescaled behaves as

Wk1,k2(xi

√
N, yi

√
N) → O

(
N

k
2
)

(4.37)

because of the disconnected one-point self-closing loops (the lowest term of the expansion)
and that the connected resolvent function properly rescaled behaves as

Wc
k1,k2

(xi

√
N, yi

√
N) → O

(
1

N
3k−4

2

)
(4.38)

where k = k1 + k2.
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Appendix A. Summation over the chains of propagators N and N ∗ in the Gaussian case

In this appendix, we calculate the 1
ξi
, 1

η∗
i

expansion obtained from a combination of chains

such that all poles 1
ξi−ξj

(resp. 1
η∗

i −η∗
j

) have zero residue. Without lack of generalities, we

suppose the variables ξi and η∗
i to be real in order to organize the cancellations. The resulting

expansion is valid for the variables ξi and η∗
i complex.

We consider a chain of (p − 1) propagators N (the arguments are the same for the chains
of propagators N∗). The propagator Nn(ξi, ξi+1) has a pole at ξi = ξi+1. However, when we
sum over the p! chains obtained by exchanging the p points, the poles disappear as we explain
now: we consider two points ξb and ξc and look for the pole at ξb = ξc; many chains do
not contain the propagators Nn(ξb, ξc) or Nn(ξc, ξb) and have no pole at ξb = ξc. Now, we
associate by pair the chains with a propagator Nn(ξb, ξc) or Nn(ξc, ξb) by exchanging b and
c; the combination (Nn(ξa, ξb)Nn(ξb, ξc)Nn(ξc, ξd) + Nn(ξa, ξc)Nn(ξc, ξb)Nn(ξb, ξd)) has no
pole at ξb = ξc and is equal to

· · ·
(

ξa

ξd

)n+1
ξd − ξa

(ξb − ξa)(ξd − ξc)(ξc − ξa)(ξd − ξb)
· · · . (A.1)
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Similar arguments prove the absence of poles at ξb = ξc if b or/and c are end-points of the chain,
for instance in (Nn(ξb, ξc) + Nn(ξc, ξb)) or in (Nn(ξa, ξb)Nn(ξb, ξc) + Nn(ξa, ξc)Nn(ξc, ξb)).
We remind that the self-closing loops Nn(ξb, ξb) are replaced in (1.26) by Hn(ξb, ξb) given in
(3.6a) and contribute only to disconnected parts of the graphs (Ji = 0) and that the two-point
loop Nn(ξb, ξc)Nn(ξc, ξb) is replaced in (1.26) by ‘Nn(ξb, ξc)Nn(ξc, ξb)’ which has no pole
and is zero in rotationally invariant systems.

Consequently, since we have no poles at coinciding ξ , the expansion in 1
ξi

for the
contribution of the p! chains is the same whatever sector we choose ξα1 � ξα2 � · · · � ξαp

and the results must contain terms of the type
(

1
ξi

)Ji+1
with Ji > 0 if p > 1. According to the

chosen sector we use the convergent expansion

1

ξi+1 − ξi

= 1

ξi+1

∞∑
j=0

(
ξi

ξi+1

)j

, ξi < ξi+1 (A.2a)

1

ξi+1 − ξi

= − 1

ξi

∞∑
j=0

(
ξi+1

ξi

)j

, ξi > ξi+1. (A.2b)

Now, each chain separately can be expanded in the chosen sector but if we find in the expansion
some contributions

(
1
ξi

)Ji+1
with a negative or null power Ji , we may ignore that contribution

since we know that it must be cancelled when we sum over the p! chains.
For instance, we consider three consecutive points of the chain and the corresponding

situation

Nn(ξi−1, ξi)Nn(ξi, ξi+1), ξi = Inf(ξi−1, ξi, ξi+1) (A.3)

according to (A.2) we obtain the contribution

− 1

ξi−1ξi+1

(
ξi−1

ξi+1

)n+1 ∞∑
r,s=0

(
ξi

ξi−1

)r (
ξi

ξi+1

)s

. (A.4)

This term provides for the variable ξi a contribution(
1

ξi

)−r−s

→ Ji = −r − s − 1 < 0 (A.5)

so that this chain should be ignored in the chosen sector. In such a sector, only the chains with
no other relative minimum that the end-points of the chain should be considered.

A first important consequence of this remark is that the chains which form a loop give no
contribution; this can be verified for instance in (A.1) with a = d in the case of a three-point
loop. A second consequence is that if we compute

−An(η
∗
1, ξb1)

p−1∏
i=1

Nn

(
ξbi

, ξbi+1

)
Kn

(
ξbp

, η∗
2

)
(A.6)

in the sector ξα1 � ξα2 � · · · � ξαp
then, ξα1 is either ξb1 or ξbp

and along the chain we have

ξb1 � ξb2 � · · · � ξbq
= ξαp

� ξbq+1 � ξbq+2 � · · · � ξbp
1 � q � p. (A.7)

From (A.2), we obtain for (A.6)

(−)p−q 1

(η∗
1)

i+1

(
1

ξb1

)i−n−r1 q−1∏
i=2

(
1

ξbi

)ri−1−ri+1

×
(

1

ξbq

)rq−1+rq +2 p−1∏
i=q+1

(
1

ξbi

)ri−ri−1+1 ( 1

ξbp

)n−j−rp−1+1 1

(η∗
2)

−j
(A.8)
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and by identification, we have

Jb1 = i − n − r1 − 1 (A.9a)

Jbi
= ri−1 − ri 2 � i � q − 1 (A.9b)

Jbq
= rq−1 + rq + 1 (A.9c)

Jbi
= ri − ri−1 q + 1 � i � p − 1 (A.9d)

Jbp
= n − j − rp−1 (A.9e)

which implies

J =
p∑

i=1

Jbi
= i − j. (A.10)

Clearly, the variables i and ri are all determined as function of n, j and Jbi
; the constraints

i � n + 1 and ri � 0 together with Jbi
> 0 imply only two constraints on j ,

j � n − J+ (A.11a)

j � n − J+ − Jbq
+ 1 (A.11b)

with

J+ =
p∑

i=q+1

Jbi
. (A.12)

The original sum over j of the function hi

hj
describing the kernels An

(
η∗

1, ξb1

)
and Kn

(
ξbp

, η∗
2

)
is, for that chain, transformed into

n∑
j=0

hj+J

hj

. . . ⇒ (−)p−q

n−J+∑
j=n−J+−Jbq +1

hj+J

hj

= (−)p−qTJ+

(
1 − TJap

) n∑
j=0

hj+J

hj

· · · (A.13)

where the operator Ta is defined in (3.16).
Finally, summing over all the p! chains consists in summing over all subsets of

{α1, . . . , αp−1} (including the empty set and the complete set) corresponding to the definition
of J+. Taking into account the alternate sign in (−)p−q the total sum is nothing but

p∏
i=1

(
1 − TJi

) n∑
j=0

hj+J

hj

· · · . (A.14)

This result is the purpose of this appendix.

Appendix B. The ’t Hooft expansion

We define the symbol

n∗J = (n + 1)(n + 2) · · · (n + J ) (B.1)

which is expanded in powers of n as

n∗J =
J∑

p=0

σp(J )nJ−p (B.2)
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with

σ0(J ) = 1 σJ (J ) = J ! (B.3a)

σ1(J ) = J (J + 1)

2
σp(J ) = 0 if p > J. (B.3b)

For a given p, the coefficients σp(J ) are polynomials in J ; clearly we have

σp(J ) =
∑

1�k1<k2<···<kp�J

k1k2 · · · kp (B.4)

and we observe the relation

σp(J ) = σp(J − 1) + Jσp−1(J − 1). (B.5)

Since σp(J ) vanishes if J < p, we write

σp(J ) = 1

2pp!
J (J − 1) · · · (J − p + 1)πp(J ) (B.6a)

π0(J ) = 1 π1(J ) = J + 1. (B.6b)

The relation

Jπp(J ) = (J − p)πp(J − 1) + 2pJπp−1(J − 1) (B.7)

shows that πp(J ) is a monic polynomial of degree p in J which vanishes at J = −1 if p > 0.
We find

π2(J ) = (J + 1)

(
J +

2

3

)
π3(J ) = J (J + 1)2 (B.8a)

π4(J ) = (J + 1)

(
J 3 + J 2 − 2

3
J − 8

15

)
(B.8b)

π5(J ) = J (J + 1)2

(
J 2 − 1

3
J − 2

)
. (B.8c)

We note that at large J

σp(J ) ∼ 1

p!

(
J 2

2

)p

(B.9)

so that the so-called BMN limit (n and J → ∞, J 2

n
= cte) is

n∗J ∼ nJ e
J2

2n . (B.10)

From the generating functional

(1 + x)−j−1 =
∞∑

J=0

(−)J j ∗J xJ

J !
(B.11)

and from
n∑

j=0

(1 + x)−j−1 = 1 − (1 + x)−n−1

x
(B.12)
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we obtain by identification of the powers of x
n∑

j=0

j ∗J = n∗(J+1)

J + 1
. (B.13)

In section 4 we have to calculate
N−1∑

j=N−J

j ∗J = (N − 1)∗(J+1) − (N − J − 1)∗(J+1)

J + 1
. (B.14)

From

(N − 1)∗(J+1) = N(N + 1) · · · (N + J ) =
J∑

p=0

σp(J )NJ−p+1 (B.15a)

(N − J − 1)∗(J+1) = N(N − 1) · · · (N − J ) =
J∑

p=0

(−)pσp(J )NJ−p+1 (B.15b)

we obtain the topological ’t Hooft expansion
N−1∑

j=N−J

j ∗J = 2

J + 1

J∑
p odd

σp(J )NJ−p+1. (B.16)

Also, from (B.9), the BMN limit (large N, large J, J 2

N
= cte) is

N−1∑
j=N−J

j ∗J ∼ 2NJ+1

J
sh

(
J 2

2N

)
. (B.17)

We find it convenient to introduce the expression

n∗∗(J+1) = e−( J
2 +1) ∂

∂n n∗(J+1) (B.18a)

n∗∗(J+1) =
(

n − J

2

)(
n − J

2
+ 1

)
· · ·

(
n +

J

2
− 1

)(
n +

J

2

)
(B.18b)

which has clearly a 1
n2 expansion

n∗∗(J+1) =
E( J+1

2 )∑
p=0

(−)p�2p(J )nJ−2p+1 (B.19)

with

�0(J ) = 1 �2(J ) = J (J + 1)(J + 2)

24
. (B.20)

We have the relation

�2p(J ) = �2p(J − 2) +
J 2

4
�2p−2(J − 2). (B.21)

We write for p > 0

�2p(J ) = (J − 2p + 2)(J − 2p + 3) · · · J (J + 1)

(24)pp!
θ2p(J ) (B.22a)

θ0(J ) = 1 θ2(J ) = J + 2 (B.22b)
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relation (B.21) becomes

J (J + 1)θ2p(J ) = (J − 2p)(J − 2p + 1)θ2p(J − 2) + 6pJ 2θ2p−2(J − 2). (B.23)

The polynomials θ2p(J ) are monic polynomials of degree p in J which vanish for J = −2 if
p > 0. We have

θ4(J ) = (J + 2)

(
J +

12

5

)
(B.24a)

θ6(J ) = (J + 2)

(
J 2 +

26

5
J +

48

7

)
(B.24b)

θ8(J ) = (J + 2)

(
J 3 +

42

5
J 2 +

4184

175
J +

576

25

)
. (B.24c)

At large J

�2p(J ) ∼ 1

p!

(
J 3

24

)p

(B.25)

so that the ‘BMN’ limit (and the first correction) of n∗∗(J+1) is

n∗∗(J+1) ∼ nJ+1 e− J3

24n2 = nJ+1

[
1 + O

(
1

J

)]
,

J 2

n
= cte (B.26)

the exponential term being the first correction to the ‘BMN’ limit.
With these notations, we may compute directly the 1

N2 expansion of

p∏
i=1

(
1 − TJi

) N−1∑
k=0

�(k + J + 1)

�(k + 1)
= 2p

J + 1

p∏
i=1

[
sh

(
Ji

2

∂

∂N

)]
N∗∗(J+1), (B.27)

where
∑p

i=1 Ji = J ; the ‘BMN’ limit is trivially

p∏
i=1

(
1 − TJi

) N−1∑
k=0

�(k + J + 1)

�(k + 1)
∼ 2p NJ+1

J

p∏
i=1

[
sh

(
JiJ

2N

)]
,

JiJ

N
= cte. (B.28)

Finally, if we compare the coefficients of the term xb in the expansions

(1 + x)−j−1 = (1 + x)−j−a−1(1 + x)a (B.29)

we obtain the relation

�(j + b + 1)

�(j + 1)
=

Inf(a,b)∑
q=0

(−)qq!Cq
a C

q

b

�(j + a + b − q + 1)

�(j + a + 1)
(B.30)

if a is a non-negative integer (with trivial analytic continuation to any a). As a consequence

N−1∑
j=0

�(j + a + c + 1)

�(j + 1)

�(j + b + c + 1)

�(j + c + 1)

=
Inf(a,b)∑

q=0

(−)q
q!Cq

a C
q

b

(a + b + c − q + 1)

�(N + a + b + c − q + 1)

�(N)
. (B.31)
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